MIMO Underwater Acoustic Communications in Ports and Shallow Waters at Very High Frequency

نویسندگان

  • Gaultier Real
  • Pierre-Philippe J. Beaujean
  • Pierre-Jean Bouvet
چکیده

Hermes is a Single-Input Single-Output (SISO) underwater acoustic modem that achieves very high-bit rate digital communications in ports and shallow waters. Here, the authors study the capability of Hermes to support Multiple-Input-Multiple-Output (MIMO) technology. A least-square channel estimation algorithm is used to evaluate multiple MIMO channel impulse responses at the receiver end. A deconvolution routine is used to separate the messages coming from different sources. This paper covers the performance of both the channel estimation and the MIMO deconvolution processes using either simulated data or field data. The MIMO equalization performance is measured by comparing three relative root mean-squared errors (RMSE), obtained by calculations between the source signal (a pseudo-noise sequence) and the corresponding received MIMO signal at various stages of the deconvolution process; prior to any interference removal, at the output of the Linear Equalization (LE) process and at the output of an interference cancellation process with complete a priori knowledge of the transmitted signal. Using the simulated data, the RMSE using LE is −20.5 dB (where 0 dB corresponds to 100% of relative error) while the OPEN ACCESS J. Sens. Actuator Netw. 2013, 2 701 lower bound value is −33.4 dB. Using experimental data, the LE performance is −3.3 dB and the lower bound RMSE value is −27 dB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Domain Block and Per-Tone Equalization for MIMO-OFDM in Shallow Underwater Acoustic Communication

Shallow underwater acoustic (UWA) channel exhibits rapid temporal variations, extensive multipath spreads, and severe frequency-dependent attenuations. So, high data rate communication with high spectral efficiency in this challenging medium requires efficient system design. Multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO–OFDM) is a promising solution for reliabl...

متن کامل

Environmental Effects On Phase Coherent Underwater Acoustic Communications: A Perspective From Several Experimental Measurements

This paper presents a summary of results from several experiments using phase coherent underwater acoustic communications in shallow waters with weak to strong internal waves. Measurements of temporal coherence time of the underwater acoustic channels are presented and related to the equalizer performance.

متن کامل

A high-frequency warm shallow water acoustic communications channel model and measurements.

Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and hi...

متن کامل

Doppler Compensated Front – End Receiver Design for Underwater Acoustic Channels Using Mimo-Ofdm

Over the past three decades underwater acoustic communications has grown in a spectaculous manner. Continued research over the years has resulted in improved performance and robustness as compared to the initial single-carrier communication systems. Multicarrier modulation in the form of orthogonal frequency division multiplexing (OFDM) has emerged as a promising modulation scheme for underwate...

متن کامل

Acoustic Channel Modeling and Simulation for Underwater Acoustic Wireless Sensing Networks

Underwater acoustic channels are band-limited and reverberant, posing many obstacles to reliable, phase-coherent acoustic communications. In terrestrial wireless sensor networks, the nodes use radio frequency (RF) to build up the communication. In underwater environments, due to water absorption, radio wave does not work well. Compared to radio waves, sound has superior propagation characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sensor and Actuator Networks

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013